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ABSTRACT

In this paper we present a robust methodology to deal with phenotype 
prediction problems associated to drug repositioning in rare diseases, which 
is based on the robust sampling of altered pathways. We show the application 
to the analysis of IBM (Inclusion Body Myositis) providing new insights about 
the mechanisms involved in its development: cytotoxic CD8 T cell-mediated 
immune response and pathogenic protein accumulation in myofibrils related 
to the proteasome inhibition. The originality of this methodology consists of  
performing a robust and deep sampling of the altered pathways and relating 
these results to possible compounds via the connectivity map paradigm. 
The methodology is particularly well-suited for the case of rare diseases 
where few genetic samples are at disposal. We believe that this method for 
drug optimization is more effective and complementary to the target centric 
approach that loses efficacy due to a poor understanding of the disease 
mechanisms to establish an optimum mechanism of action (MoA) in the 
designed drugs. However, the efficacy of the list of drugs and gene targets 
provided by this approach should be preclinically validated and clinically tested. 
This methodology can be easily adapted to other rare and non-rare diseases.

Introduction
Drug discovery in rare diseases is hampered by intrinsic and 

extrinsic factors of the drug design process, such as, the limited 
number of patients affected by the disease and by the increasing 
costs faced by the pharmaceutical companies to find new therapeutic 
targets and to bring them to the market. A disease is considered rare 
(in the USA) if it affecting fewer than 200,000 individuals. As result of 
this definition and the corresponding epidemiological studies, there 
are approximately 6800 rare diseases, according to the National 
Institute of Health. Drug discovery involves the identification of 
new compounds to successfully treat the diseases, that is, having a 
mechanism of action (MOA) that provides an optimal therapeutic 
index by reducing at the same time the outcome of potential side 
effects, in order to have a favorable safety and efficacy profile. The 
complexity of this process provokes that new drug development 
is a capital-intensive process with mean costs estimated to 2.8 
billion dollars (DiMasi et al., 2016)1.  Although the orphan diseases 
collectively affect 400 million worldwide, the high developing costs 
with respect to the small number of affected patients have caused 
that these diseases were historically neglected by the drug industry. 
Many of the estimated 5,000 to 8,000 rare conditions are genetic or 
have a genetic component (NIH, 2010)2. The main approaches in drug 
discovery include target based drug discovery to modulate a specific 
gene, and phenotypic drug discovery that measure phenotypes 
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associated with the disease to unravelling translational 
biomarkers and identifying small molecules with high 
therapeutic index. Swinney and Xia, (2014)3 remarked 
that the phenotypic approach generally provides better 
results. Drug development for rare diseases has additional 
challenges in comparison to common diseases due to the 
fewer patients available for inclusion in clinical trials and 
their geographical dispersion. Therefore, a pragmatic 
approach is needed for finding novel orphan drugs, since 
the use of deep learning methodologies is hampered by the 
limited amount of samples. In this paper we introduce an 
efficient methodology to address orphan drug discovery in 
rare diseases, which is based in a robust sampling of the 
genetic pathways altered by the disease, that is, the set of 
most discriminatory genes of the IBM phenotype which 
have been altered by the disease. In this paper we will 
demonstrate that this robust phenotypic approach is able 
to obtain interesting results in the case of Inclusion Body 
Myositis, highlighting viral infection as a possible trigger 
of this disease and Interferon-gamma-mediated Signaling 
Pathway as the main mechanism involved. The word robust 
refers in this case to the algorithm used to characterize 
these pathways by dealing with the intrinsic high under 
determinacy of this kind of problems As a result of this 
analysis, the main altered pathways and different potential 
orphan drugs are presented. These findings should be 
preclinically validated and clinically tested. 

Understanding defective pathways

Phenotype prediction consists of identifying the set 
or sets of genes that influence the disease genesis and 
development and constitutes one of the main challenges 
faced in drug design. Two main obstacles related to the 
analysis of genetic data with translational means are the 
high dimension of the genetic information with respect 
to the sample dimension, and the absence of a conceptual 
model that relates the different genetic signatures to the 
class prediction, more precisely, an operator of the form:

( ): s C= {1, 2},                                          (1)

that links the genetic signature g to the set of classes  C 
= {1, 2} in which the phenotype is divided (in the case of a 
binary classification problem). In practice the phenotype 
division might correspond to different interesting 
problems in drug design, such as, unravelling the altered 
genetic pathways in a disease (see for instance Fernández-
Martínez et al., 2017)4; understanding the mechanisms of 
action of a drug (MoA) in a specific context (see for instance 
Chen et al., 2016)5, or the genetic pathways that might be 
responsible of undesirable side effects (see for instance 
Reinbolt et al., 2018)6. 

Microarray technologies provide relative levels of gene 
expression in the transcriptome, and can be efficiently 
modelled to unravel the altered genetic pathways in a 

disease, that regulate important cellular mechanisms, 
signaling events, or have important protein coding 
functions. Following this approach the data consists in 
an expression matrix E of different samples (patients and 
healthy controls). The rows in the matrix are the samples 
that are monitored in the analysis, and the columns are the 
genetic probes that are measured in each sample. We also 
need the array (Cobs) that provides the observed classes 
of the set of samples that have monitored and form the 
training dataset, informed by medical doctors. 

Finding the discriminatory genetic signatures 
corresponding to the classifier L*(g), involves solving the 
optimization of the cost function 

O( ) = ( ) obs
1

,                                (2)

to measure the difference between the observed 
classes  (Cobs) and the corresponding set of predictions 
L*(g), via the genetic signature g and the classifier L*. The 
notation ( ) obs

1 represents the prediction error, 
which coincides with the number of uncorrected samples 
predicted by the classifier and is related to the accuracy of  
L* according to g: Acc(g) = 100 - O(g).

This kind of prediction problems are highly 
underdetermined since the number of monitored genetic 
probes is always much larger than the number of disease 
samples, and consequently, the associated uncertainty 
space of these problems is huge. Mathematically, the 
uncertainty space relative to L* is composed by the sets of 
high predictive genetic networks with similar predictive 
accuracy: 

Mtol = {g: O(g) < tol}.                                (3)

Expression (3) means that the uncertainty space of 
the phenotype prediction problem contains all the genetic 
networks whose predictive accuracy is greater than  100 - 
tol:Acc(g  > 100-tol.  

The sampling and posterior analysis  of Mtol is crucial, 
since the genetic signatures contained in this set are 
expected to be involved in the disease development. The 
high degree of under-determinacy of the learning problem 
(2) makes the characterization of the involved biological 
pathways to be very ambiguous (De Andrés-Galiana et al., 
2016a)7. Noise in data (expression matrix E) and in the 
class assignment (Cobs) provoke that the genetic signature 
with the highest predictive accuracy cannot explain the 
origin of the disease (De Andrés-Galiana et al., 2016 b).

The methodology presented in this paper is based in 
the following assumption: “the high discriminatory genetic 
networks in Mtol are involved in the mechanistic pathways 
that serve to explain the disease development, and therefore 
can be used to finding orphan drugs able to re-establish 
the homeostasis perturbed by the disease”. The algorithm 
used to sample Mtol  was the holdout sampler (Fernández-
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Martínez et al., 2018a)9, that generates different random 
75/25 data bags (or holdouts), where 75 % of the data in 
each bag is used for learning and 25% for blind validation. 
For each of these bags the small-scale genetic signature 
is found. The posterior analysis consists of finding the 
most frequently sampled genes, taking into account all the 
high predictive networks (small-scale genetic signatures 
with high validation accuracy), serves to establish the 
defective genetic pathways using ontological platforms. 
This holdout sampler has been successfully applied in 
other fields to sample the uncertainty space in different 
technological inverse problems (Fernández-Martínez et al., 
2018b; Fernández-Muñiz et al., 2019)10,11.  In this paper we 
took a step forward, and the knowledge issued from this 
analysis is used to perform drug repositioning using the 
connectivity map paradigm (Lamb et al., 2006)12.

Material and Methods. Application to IBM

State-of-the-art 

Inclusion Body Myositis (IBM) is the most common 
inflammatory muscle disease characterized by progressive 
muscle weakness in older adults. The progressive course 
of IBM leads slowly to severe disability. IBM is a rare 
disease with a very low prevalence rate. The causes for 
IBM are unknown. Two main theories coexist: the first 
one suggests an inflammation-immune reaction triggered 
by a virus (Ghannam et al., 2014)13, and the second one 
a degenerative disorder related to aging of the muscle 
fibers and an abnormal pathogenic protein accumulation 
in myofibrils related to the proteasome inhibition (Rose, 
2013)14.

According to cureibm.org the clinical trials in IBM 
include the following treatments:

1. Arimoclomol (University College, England): this 
drug targets the proper folding of the proteins to 
clearing away the abnormal clumps in the muscle.

2. Pioglitazone (Johns Hopkins University, USA): this 
drug, used for diabetes), targets the improvement of 
the function of defective mitochondria to increase 
muscle strength. 

3. Rapamycin (Hôpital Pitié-Salpetriêre, France): this 
drug regulates cell growth and metabolism and 
has an immunosuppressive effect, and was used 
to prevent kidney transplant rejection. This drug 
failed to show efficacy, although the patients treated 
improved 6-minutes distance walked.

4. Follistatin: this drug is used to block myostatin, 
a protein which inhibits muscle growth. Blocking 
myostatin allows the muscles to grow. No adverse 
effects were detected, and patients who received the 
therapy improved in a 6-minute walk test. 

This knowledge is important to understand the 
therapeutic hypothesis that are currently used and 
comparing to the novel results that are presented in this 
paper.

The data
The microarray dataset that we interpreted to analyze 

IBM contains 22283 genetic probes and 34 samples: 11 
healthy controls and 23 IBM samples (Greenberg et al., 
2002, 2005)15,16. Class 1 corresponds to healthy controls 
and class 2 to IBM patients. This genetic experiment has a 
very high underdetermined character since the number of 
genetic probes is 655 greater than the number of samples. 
As it has been previously highlighted, this is a common 
feature of all phenotype prediction problems, that brings 
ambiguity in the phenotype prediction if the modelling 
approach that is used is not able to handle this intrinsic 
feature, that highly impacts the results obtained in the drug 
design process. This dataset al.so contained 6 samples of 
patients with polymyositis (PM).

Results and discussion

Altered genetic pathways
Table 1 shows the list of the most frequently sampled 

genes by the holdout sampler, divided into two categories: 
over-expressed (expression in IBM higher than in healthy 
controls) and under-expressed.  This list contains the most 
important 37 genes in each category, that can be clustered 
into the main following families:

•	 HLA genes belonging to the Major Histocompatibility 
complex class I (HLA-A, HLA-B, HLA-C, HLA-G, 
HLA-E); 

•	 Immunoglobulin Kappa genes (IGK, IGKC)); 

•	 Actin genes (ACTB, ACTG1); Calcium binding Protein 
genes (S100A4, S100A6); 

•	 Interferon Regulatory genes (IRF9).

•	 Ferritin production genes (FLT).

•	 Genes related to Immunodeficiency (B2M, STAT1), 
and 

•	 Tubulin genes (TUBA1B). 

These genes are also related to other disease 
phenotypes, such as Muscular Dystrophy, HIV type 1 and 
Becher Muscular Dystrophy. This knowledge is important 
because it shows how different phenotypes are related 
and can guide the drug repositioning in some cases, that is, 
drugs used for that diseases could be useful to treat IBM.

The main pathways issued from this analysis were:

•	 Antigen processing and presentation (B2M and HLA 
genes).
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•	 Immune Response Role of DAP12 receptors in NK 
cells (actin, HLA and Immunoglobulin Kappa genes).

•	 Phagosome (actin, HLA and tubulin genes).

•	 Immune response IFN alpha/beta signaling pathway 
(STAT1, IRF9 and HLA genes).

•	 Influenza A pathway (STAT1, IRF9, actin and HLA 
genes).

•	 Interferon Gamma Signaling (B2M, STAT1, IRF9 and 
HLA genes).

Besides, the main biological processes involved were: 

•	 Antigen Processing and Presentation.

•	 Interferon-gamma-mediated Signaling Pathway.

•	 Antigen Processing and Presentation of Peptide 
Antigen via MHC Class I.

•	 Type I Interferon Signaling Pathway.

•	 Regulation of Immune Response.

The same pathways (Immune System/ Interferon 
Gamma Signaling/ Immune Response IFN Alpha/beta 
Signaling Pathway/ Cytokine Signaling in Immune System/ 
Antigen Presentation- Folding, Assembly and Peptide 
Loading of Class I MHC/ Type II Interferon Signaling 
(IFNG)/ NF-kappaB Signaling/ Antigen Processing-Cross 
Presentation/ Natural Killer Cell Receptors/ Influenza A/ 
Immune Response Role of DAP12 Receptors in NK Cells/ 
Viral Carcinogenesis) were also found for PM patients. 
This result suggests that the results shown in this paper 
might be generalizable to the entire class of inflammatory 
myopathies. Table 2 shows the results of the pathway 
analysis provided by Enrichr2016 (Kuleshov et al., 
2016)17, confirming the results of the previous pathway 
analysis.

Drug repositioning for IBM

The final step consists in using the knowledge that has 
been gained, to select one or several targets and applying 
the state-of-the-art in drug repositioning (Bezerianos et al., 
2017)18.  In this case we have used the Connectivity Map 
(CMAP 02) web application from the Broad Institute, which 
serves to identify potential biological relationships between 
drugs and orphan diseases modelling transcriptomic data 
(Lamb et al., 2006)12.  CMAP searches for drugs tested 
in different cell lines at different doses that are able to 
re-establish the homeostasis, that is, the overexpressed 
genes in the disease are down-regulated and the under-
expressed genes are increased in expression. CMAP uses 
a modified Kolmogorov-Smirnov test to calculate the 
similarity of a drug perturbed expression profile to the 
gene expression profile used to query the database. This 
algorithm also considers the opposite effects of the drug 
to decrease its score. As indicated by CMAP, when the up- 
and down-regulated lists correspond to the disease state, 
then the perturbagens with the most negative connections 
would correspond to potential treatments, while the ones 
with the most positive scores will elicit transcriptional 
effects similar to the disease state. It should be noted that 
the algorithm used for drug discovery is deterministic, that 
is, the drugs that are found do not change as far as the lists 
of over-expressed and under-expressed genes remain the 
same. This fact highlights the importance of using a robust 
method for pathway analysis. The genes that are used to 
establish the drugs hits are those that are highly correlated 
to the phenotype. 

Over-expressed genes/probes Under-expressed genes/probes
HLA-B NDUFS7
HLA-C EIF1
206559_x_at CAPN3
B2M DCUN1D2
EEF1A1 SLC38A3
HLA-G PFKFB1
TIMP1 RAD23A
FTL TMEM159
S100A6 MIR6778 /// SHMT1
HCRP1 EIF1
STAT1 EEF1G /// MIR3654
MIR7703 /// PSME2 YBX3
TUBA1B PNPLA4
BTN3A3 AQP4
LOC101060363 /// PPIA DTNA
C11orf48 /// LOC102288414 GLUL
HLA-F EEF1G /// MIR3654
RPS4Y1 LGR5
IRF9 ITGB6 /// LOC100505984
PRUNE2 PBX1
IL32 RS1
TMSB10 EIF4B
ACTB /// ACTG1 ITGB6 /// LOC100505984
S100A4 216737_at
SP100 DHPS
B3GALT4 GRB10
CD24 LMCD1
ATP6V0E2 ACTN2
MLLT11 IDE
NANS SAMD4A
CDKN1A RXRA
IGK /// IGKC USP24
UCP2 YBX1
PARP12 CARM1
TUBA1C PAIP2B
ESYT1 EEF2
LOC101060363 /// PPIA SIX1

Table 1. List of over-expressed and under-expressed genes in the 
set of most discriminatory genes of the IBM vs healthy controls (HC) 
phenotype. Over-expression means in this case higher expression in 
IBM patients than in HC.
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Table 3 shows the drugs found by CMAP with positive 
effects and best scores (smaller than -0.90). The drug with 
the highest score found was chlormezanone, which is a 
muscle relaxant. This drug has as main side effect to cause 
toxic epidermal necrolysis. Thapsigargin is an  inhibitor of 
the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA), 
and inhibits the fusion of autophagosomes with lysosomes 
which is the last step in the autophagic process. The 
inhibition of the autophagic process induces stress on the 
endoplasmic reticulum and leads to cellular death (Ganley 
et al., 2011)19 comes in the second place. Felodipine is 
a calcium channel blocker type used to treat high blood 
pressure. Palmatine is a  protoberberine alkaloid that has 
several pharmacological activities, including antimicrobial, 
glucose and cholesterol-lowering, antitumoral, and 
immunomodulatory properties (Cai et al.,  2016)20. 
Oxaprozin is a non-steroidal anti-inflammatory drug and 
apoptotic agent that inhibits Akt, NF-κB and caspase-3 
activation. IKK/NF-κB inhibition causes antigen presenting 
cells to undergo cell death (Tilstra et al., 2014)21. Clorsulon 
is an anthelmintic agent. Cefotaxime is an antibiotic used 
to treat a number of bacterial infections, such as, 
Staphylococcus aureus, which is one bacteria whose 
pathways appeared to associated to IBM in this analysis.

Table 4 shows the drugs found by CMAP with adverse 
effects, that is, promoting gene regulations against 
homeostasis. The drug with the highest score found was 

suloctidil, which is a vasodilator to treat cerebral vascular 
disorders. Trichostatin A, which is Histone Deacetylase 
Inhibitor (HDI) that decreases cholesterol levels in neuronal 
cells by modulating key genes in cholesterol synthesis 
(Nunes et al., 2017)22. This drug also has showed positive 
effects with respect to the disease when used in prostate 
cancer cell-lines. Vorinostat is also an HDI. Oxedrine is also 
a cardiac stimulant.  One of the major limitations of this 
approach is that drugs are not tested in muscle cell lines. In 
fact, the results showed in Table 4 showed three cell lines: 
HL60 (human leukemia cell line), MCF7 (human breast 
adenocarcinoma cell line) and PC3 (human prostate cancer 
cell line). Therefore, these results should be interpreted with 
caution in the case of muscle cell lines. We have also used 
the LC1000CDS package from NIH-LINCS program (http://
www.lincsproject.org) to look for potential treatments. Table 
5 shows the main compounds obtained to reverse the disease 
signature. This table highlights different combinations of 
Exemestane and Rimexolone. Exemestane is an aromatase 
inhibitor and Rimexolone is a glucocorticoid steroid used to 
treat eye inflammation and keratitis. 

Database Pathways

KEG
Phagosome/ Viral myocarditis/Viral carcinogenesis/ Antigen processing and presentation/ Herpes simplex infection/ Al-
lograft rejection/ Graft-versus-host disease/ Type I diabetes mellitus/ Autoimmune thyroid disease/ Pathogenic Escherich-
ia coli infection

WikiPathways
Allograft Rejection/ Translation Factors/ Proteasome Degradation/ Cardiomyopathy/ Translation Factors muscles/ Patho-
genic Escherichia coli infection/ Type II interferon signaling (IFNG)/ TGF-beta Receptor Signaling/ Interferon type I signal-
ing pathways/ Integrated Pancreatic Cancer Pathway.

REACTOME

Endosomal-Vacuolar pathway/ Interferon gamma signaling/ Antigen Presentation: Folding, assembly and peptide loading 
of class I MHC/ ER-Phagosome pathway/ Antigen Processing-Cross presentation/Interferon Signaling/ Interferon alpha-be-
ta signaling/ Cytokine Signaling in Immune system/ Immunoregulatory interactions between a Lymphoid and a non-Lym-
phoid cells/ Immune System.

NCI-Nature
Glucocorticoid receptor regulatory network/ Signaling events mediated by PRL/IL6-mediated signaling events/IFN-gamma 
pathway/Signaling events mediated by Stem cell factor receptor (c-Kit)/ Signaling events mediated by HDAC Class III/Regu-
lation of Androgen receptor/IL12-mediated signaling events/mTOR signaling pathway/PDGFR-beta signaling pathway.

Table 2. Main pathways provided by Enrichr2016 using different ontological databases.

CMAP name dose cell score up down
chlormezanone 15 µM HL60 -1 -0.334 0.239
thapsigargin 100 nM MCF7 -0.99 -0.326 0.241
felodipine 10 µM MCF7 -0.974 -0.397 0.16
palmatine 10 µM HL60 -0.972 -0.261 0.296
oxaprozin 300 µM MCF7 -0.949 -0.191 0.352
clorsulon 11 µM MCF7 -0.94 -0.314 0.224
chlorprothixene 11 µM HL60 -0.932 -0.274 0.259
cefotaxime 8 µM HL60 -0.93 -0.321 0.211

Table 3. A) List of main compounds found by CMAP with positive 
effects (potential treatments).

CMAP name dose cell score up down
suloctidil 12 µM HL60 1 0.413 -0.235
trichostatin A 100 nM MCF7 0.93 0.464 -0.139
trichostatin A 1 µM MCF7 0.915 0.369 -0.223
trichostatin A 100 nM MCF7 0.912 0.398 -0.192
oxedrine 24 µM HL60 0.911 0.287 -0.303
vorinostat 10 µM MCF7 0.901 0.446 -0.138

Table 4. List of main compounds found by CMAP02 with similar 
effects to the disease state.

Score Combination
0.2836 Exemestane BRD-K48016779
0.2687 Exemestane PHENOLPHTHALEIN
0.2687 Exemestane BRD-A24054354
0.2687 Rimexolone BRD-A24054354
0.2687 Exemestane BRD-K53472085

Table 5. List of the main compounds found by LC1000DCS.
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Figure 1 shows the correlation tree among the most 
discriminatory genes of the IBM phenotype (DeAndrés-
Galiana et al., 2016a)7. This tree is built via the minimum 
spanning tree (Kruskal, 1956)23 using the Pearson 
correlation coefficient among the most discriminatory 
genes of the IBM phenotype. This tree has a header gene 
(HLA-C) who is connected to other edges with the highest 
absolute value of the correlation coefficient between 
gene expressions. Therefore, this tree can be used to 
understand how the gene expression of the most important 
discriminatory genes of the IBM phenotype is inter-
regulated. 

It can be observed that STAT1 impacts positively the 
expression of HLA-G and this gene impacts the header gene 
HLA-C, which is the one with the highest discriminatory 
power. All these genes are up-regulated in IBM patients.

Therefore, down-regulation of STAT1 will induce down-
regulation of HLA-C. Hu et al. (2003)24 have reported the 
inhibition of IFN-gamma signaling by glucocorticoids: 
IFN-gamma signaling can be achieved by regulating STAT1 
expression. Based on these results, targeting genes that 
regulates the Interferon-gamma-mediated Signaling 
Pathway holds the most promise. Other possible targets 
are the down-regulation of CD74, IRF9, BTN3A3, NMI and 
other genes that are located in the lower branches of the 
tree. Using the information provided by this correlation 
tree and Gene Analytics (Stelzer et al., 2009)25 we have 
found several compounds that act on the genes of this 
tree (Table 6). This software does not provide how the 
compound impacts the gene expression. Particularly they 
are of special interest those compounds that act on the 
header genes (highlighted in bold):

•	 Decitabine is a Nucleic Acid Synthesis Inhibitor 
used to treat myelodysplastic syndromes and acute 
myeloid leukemia.

•	 Oligonucleotides are small RNA molecules that serve 
to regulate gene expression. 

•	 Retinoic acid is a metabolite of Vitamin A, and 

Tyrosine is one of the 20 standard amino acids used 
by the cells to synthesize proteins.

Interferon alfa (INN) is a drug composed of 
natural interferon alpha (IFN-α) obtained from 
the leukocyte fraction of human blood treated with Sendai 
virus. This drug enhances the proliferation of human B 
cells and activates NK cells.

2-5’-oligoadenylate synthetase is an antiviral enzyme 
that counteracts viral attack by degrading viral and 
host RNA.

Ribavirin is a synthetic guanosine nucleoside and 
antiviral agent that interferes with the synthesis of 
viral mRNA. It is used for treating hepatitis C and viral 
hemorrhagic fevers.

•	 VEGF (Vascular Endothelial Growth Factor) is a 
signal protein that stimulates the formation of blood 
vessels.

•	 Cyclosporine is an immunosuppressant medication 

Figure 1: Correlation tree among the most discriminatory genes of the IBM phenotype. 

Name Matched Genes
Decitabine HLA-B HLA-G, STAT1, TIMP1, S100A4.
Oligonucleotide HLA-G, HLA-B, STAT1, IRF9, S100A4, S100A6.

Retinoic Acid HLA-B, STAT1, IRF9, S100A4, S100A6, SP100, 
TIMP1.

Tyrosine HLA-B, STAT1, IRF9, TIMP1, S100A4.
Ifn-alpha HLA-G, STAT1, IRF9
2,5-Oligoadenylate HLA-B, STAT1, IRF9
Matrigel HLA-G, STAT1, S100A4, TIMP1.
Ribavirin HLA-B, STAT1, TIMP1.
VEGF HLA-G, STAT1, TIMP1, TMSB10.
Cyclosporine HLA-B, STAT1, TIMP1
Ribonucleic Acid HLA-G, HLA-B, TIMP1 
Progesterone HLA-G, STAT1, S100A4, S100A6, TIMP1.
Rosiglitazone STAT1, TIMP1.
Niclosamide STAT1, S100A4.
PD98059 STAT1, TIMP1.

Table 6. Compounds found by Gene Analytics acting on the main 
genes (headers) of the correlation tree shown in Figure 1.
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used in rheumatoid arthritis and in organ 
transplants to prevent rejection. Its mechanism of 
action consists in lowering the activity of T-cells.

•	 RNA is used to treat and prevent Alzheimer and also 
to improve the immune system function.

•	 Progesterone serves as an intermediate in the 
biosynthesis of steroid hormones and adrenal 
corticosteroids.

•	 Rosiglitazone is an anti-diabetic drug that has an 
anti-inflammatory effect because NF-κB levels 
fall and inhibitor levels increase in patients on 
rosiglitazone.

•	 Niclosamide is used for the treatment of most 
tapeworm infections.

•	 PD98059 is a potent and selective inhibitor of 
MAP kinase kinases (MAPKK), MEK1 and MEK2 
[Alesi et al., 1995]26. PD98059 can inhibit the 
lipopolysaccharide (LPS)-induced production of 
cytokines such as TNF-α (Reilin et al., 2001)27.

Finally, there exist natural products such as fish-
oil, curcumin, olive leaf extract, glucosamine, lithium, 
resveratrol or Omega-3 fatty acids that are recognized by 
their effect in lowering interferon gamma response in cell 
lines and animal models (see for instance Zang et al., 2011; 
Wallace et al., 2001; Rowse et al. 2012; Guang-Xiang et al., 
2005, etc)28, 29, 30, 31.  We believe that the research on rare 
diseases should benefit from both, orphan drugs and the 
analysis of mechanisms of action contained in these natural 
substances, to treat these diseases and improving the life of 
patients. 

Conclusions
In conclusion this paper shows a simple and fast 

methodology to reposition drugs for drug diseases that works 
with very few patient samples. The methodology serves to 
generate new therapeutic targets and repositioning drugs 
for pre-clinical validation and clinical test, accelerating the 
finding of new therapies. We have shown the application 
to IBM using publicly available transcriptomic data. 
Interestingly, only weak relationships exist among the 
drugs used in IBM clinical trials and the results that have 
been shown here. This research highlights some pathways 
that are widely accepted to play a role in inflammatory 
myopathies, such as the Major Histocompatibility Complex 
(MHC) class I molecules and transcription factors involved 
in MHC class I presentation, showing the relevance of 
the cytotoxic CD8 T cell-mediated immune response and 
also the importance of some genes involved in protein 
degradation in inflammatory myopathies. These pathways 
are also common to Polymyositis. We make the hypothesis 
that an inflammation-immune reaction triggered by viruses 
or bacteria is taking place, and might be also responsible 

of the poor protein degradation and recycling provoking 
an abnormal pathogenic protein accumulation in the 
myofibrils (Rose, 2013)14.

This paper shows that a correct understanding of 
the altered genetic pathways is very important in drug 
repositioning. The target-centric approach without 
consideration of an optimal MoA has been considered as 
the main responsible of the high attrition rates and the low 
productivity in pharmaceutical research and development 
(Swinney and Jason, 2011)32. Robust methods for sampling 
the altered pathways and dealing with the high intrinsic 
degree of uncertainty of these problems are needed. This 
is the case of the holdout sampler designed by our team 
and used in this paper, that has also provided excellent 
results in the uncertainty analysis in other technological 
fields. The knowledge issued from the pathways analysis 
is used to perform drug repositioning via the Connectivity 
Map paradigm. Tools such as CMAP/LC1000CDS/Gene-
Analytics serve to locate compounds that are able to 
act (and reverse) on the genetic signature perturbed 
by the disease in order to achieve homeostasis. These 
compounds can be considered as potential treatments. The 
drugs that were repositioned by CMAP belong to several 
categories: muscle relaxants, calcium channel blockers, 
antimicrobial agents, non-steroidal anti-inflammatory 
drugs, anthelmintic agents and antibiotics to treat bacterial 
infections. LC1000CDS highlighted different combinations 
of Exemestane (aromatase inhibitor) and Rimexolone 
(glucocorticoid steroid). The knowledge provided by 
the robust sampling of the altered pathways is useful 
to design target-centric approaches based on the main 
altered pathways as we have shown using Gene-Analytics. 
This package provided different compounds acting on the 
header genes of the correlation tree of the IBM phenotype, 
highlighting the importance of compounds acting on 
antiviral agents and on the interferon pathways. We hope 
that the results provided in this paper on inflammatory 
myopathies (IBM) help to improve the understanding of 
this disease in order to guide future clinical trials. Finally, 
this methodology can be easily applied to other rare and 
non-rare diseases.  

Computational methods
The computational methods used to establish the list of 

genes that are perturbed by the diseases are:

1. The holdout sampler combined with filter 
reduction methods (Fernández-Martínez et al., 
2018a)9. In each holdout the discriminatory genes 
are those that are differentially expressed and 
have the highest Fisher’s ratio. A k-NN classifier 
(DeAndrés Galiana et al., 2016a, 2016b)7,8 is used 
to establish the cross-validation accuracy of these 
genetic networks. This approach is named in this 
paper as Robust Pathways Sampling, since it serves 
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to unravel different high discriminatory genetic 
networks, instead of using just the one with the 
highest accuracy (see figure 2).

2. The posterior analysis of the most frequently 
sampled genes in the uncertainty space of the 
phenotype prediction, Mtol, consists in a frequency 
analysis of the most frequently sampled genes in 
the different high discriminatory networks that 
have been sampled. Based on this analysis, and 
establishing a cut-off frequency that depends on 
the problem, the lists of over-expressed and under-
expressed genes is selected. 

3. The pathway enrichment and drug repositioning 
algorithms using the most-frequently sampled 
genes (Lamb 2006; Stelzer et al. 2009; Kuleshov et 
al., 2016)12,17, 25.
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