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ABSTRACT

Werner syndrome (WS) is a rare autosomal recessive disorder characterized 
by a pro-oxidant/pro-inflammatory status, genomic instability, and by the 
premature onset of several age-associated diseases. The protein defective 
in WS patients (WRN) is a helicase/exonuclease involved in DNA replication, 
repair, and transcription. This review focuses on the beneficial impact of 
vitamin C treatment in mutant mouse and worm models of WS with an 
emphasis on serum metabolomic and cytokinome profiles in Wrn mutant mice. 
Vitamin C normalizes the health and life span of these mutant animals. More 
importantly, our recent results indicate that it will be possible to follow the 
beneficial impact of vitamin C at a systemic level by monitoring specific serum 
metabolites and inflammatory cytokines in a longitudinal study involving WS 
patients.

Main text 
Werner Syndrome (WS; MIM# 277700) is an autosomal recessive 

disorder characterized by genomic instability and the premature 
onset of a number of age-related diseases including ocular cataracts, 
dyslipidemia, diabetes mellitus, osteoporosis, atherosclerosis, 
and cancer1-3. The gene responsible for WS (WRN) was identified 
by positional cloning4 and its product contains an evolutionary 
conserved RecQ DNA helicase consensus domain4-6. The protein also 
has a 3’-5’ exonuclease activity7-9. WS is a rare disorder worldwide. 
However, the frequency of WS can be highly prevalent in certain 
regional populations showing high degrees of consanguinity. 
For example, the frequency of carriers has been estimated to be 
as high as 1/150 to 1/200 in several prefectures of Japan with a 
prevalence of homozygotes of ~three in one million newborns 
(see http://atlasgeneticsoncology.org/Kprones/WernerID10017.
htm). More than eighty distinct mutations potentially inactivating 
the WRN protein have been described in WS patients to date based 
on The International Registry of Werner Syndrome; Department 
of Pathology, University of Washington, Seattle, WA, USA (www.
wernersyndrome.org). These mutations include missense and 
nonsense substitutions, frame shifts and premature translation 
termination mutations, deletions and insertions. All these mutations 
are believed to disrupt the normal function of the protein or to cause 
a truncation of the protein such that it cannot localize to the nucleus, 
the normal site of WRN protein action. Accumulating evidences 
indicate that WRN is involved in DNA replication, DNA repair, and 
telomere maintenance10-18. WRN interacts with several proteins 
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important for homologous recombination, nonhomologous 
recombination, and long-patch base excision repair 
pathways12,14,17,19-24. In addition to defects in DNA replication 
and repair, alterations of gene expression at the RNA level 
have also been observed in WS cells implicating WRN in 
some aspects of transcription as well25-27. Accordingly, 
mass spectrometry analysis of an immunoprecipitated 
tagged WRN protein revealed the presence of several 
transcription factors (such as SAFB1, Scaffold Attachment 
Factor B1)28 and two subunits of the RNA polymerase 
II machinery (POLR2A and POLR2B)19. However, such 
interactions with WRN were lost upon nuclease treatments 
of the lysates prior to the immunoprecipitation step. These 
results suggest that the interaction between WRN and 
the RNA polymerase II machinery requires nucleic acids. 
In addition, the WRN protein modulates the expression 
of genes containing G-quadruplex DNA structures, a 
family of non-canonical nucleic acid structures formed 
by certain G-rich sequences at several chromosomal sites 
in WS fibroblasts26,27. However, WS cells contain several 
chromosomal rearrangements that may affect gene 
expression and the interpretation of the data. To avoid 
using WS fibroblasts from patients that accumulated DNA 
rearrangements with time, we depleted WRN protein 
levels in normal human fibroblasts for a short period of 
time (48 hours) with small interfering RNAs specific for 
the WRN mRNA to perform expression-profiling studies29. 
We determined that such WRN-depleted cells did not 
have time to accumulate mutations within 48 hours but 
exhibited increased oxidative stress. Oxidative stress is 
believed to exacerbate several age-related diseases30. More 
importantly, our microarray analyses determined that a 
short-term knock down of WRN was sufficient to induce 
an expression profile resembling the one obtained with 
fibroblasts derived from old individuals29. Thus, besides 
the already known impact of WRN on DNA replication, 
DNA repair, the p21/p53 pathway and cell cycle, gene set 
enrichment analyses of our microarray data uncovered 
significant impact of WRN levels on the expression of 
genes involved in adipocyte differentiation, oxidative 
stress, and inflammatory responses29. Remarkably, 
several defects observed in WS patients are reminiscent 
of a chronic inflammatory metabolic syndrome, which 
can also be observed in the general aging population31. 
Metabolic syndrome afflicts up to half the population of 
western countries and is considered an age-related pro-
inflammatory lipid disorder32. Accordingly, increased 
oxidative stress has been described for WS subjects in 
addition to the abnormal metabolic phenotypes such 
as enhanced intra-abdominal visceral fat accumulation 
or non-alcoholic hepatic steatosis33-36. Finally, cytokine 
analyses of the serum of WS patients indicated abnormal 
elevation of several inflammatory cytokines or interleukins 
like IL-4, IL-6, or IL-10 in addition to an abnormal increase 

of the cardiovascular risk factor plasminogen activator 
inhibitor 1 (PAI-1)37,38. Several of these cytokines are 
collectively referred to as the senescence-associated 
secretory phenotype and are important hallmarks of 
aging. Interestingly, this senescence-associated secretory 
phenotype is suppressed by reprogramming WS fibroblasts 
to generate WS induced-pluripotent stem cells upon 
transduction of the Yamanaka factors (OCT3/4, SOX2, KLF-
4, and c-myc)39.

A mouse model containing a deletion of part of 
the helicase domain was generated to understand the 
molecular basis of the premature aging phenotype in WS40. 
This mutant mouse (referred as Wrn∆hel/∆hel) synthesizes a 
stable mutant protein that has no helicase and exonuclease 
activities41. Interestingly, the metabolic and cytokine 
profiles of Wrn∆hel/∆hel mice is different from age-matched 
wild type mice or the mutant Wrn null mice that do not 
synthesize a Wrn protein41. Overall, Wrn∆hel/∆hel mice exhibit 
a marked dyslipidemia, show evidence of a low but chronic 
systemic inflammation, and a 17-22% reduction in mean 
life span compared to wild type and Wrn null mice. The 
Wrn∆hel/∆hel mouse model phenocopies several other aspects 
of the human WS such as hyperglycemia and insulin 
resistance, elevated blood hyaluronic acid, increased serum 
IL-10 and PAI-1, hepatic steatosis, aortic stenosis, cardiac 
fibrosis, and several types of cancer42-45. Importantly, we 
found that the Wrn helicase mutant protein is mislocalized 
to the cytoplasm in tissues of Wrn∆hel/∆hel mice41. In addition 
to the loss of Wrn activites in the nucleus, this cytoplasmic 
mislocalization affects the normal function of several 
organelles, including the peroxisomes, the endoplasmic 
reticulum, and the autophagosomes, leading potentially to 
the alteration of serum metabolites seen in Wrn∆hel/∆hel mice. 
Such alterations may be the precursor of molecular events 
responsible for the age-related changes observed in older 
Wrn∆hel/∆hel mice. Of relevance to this mouse work, a recent 
report indicated that WS patients with a nonsense mutation 
at position 1256 of the human WRN protein synthesized a 
stable truncated protein localized in the cytoplasm of their 
cells46. These patients exhibited type 2 diabetes, cataracts, 
hypercholesterolemia, short stature, bird-like facies, 
skin ulcers on the lower limbs, osteoporosis, and arterial 
atherosclerosis. A survey of different WS derived cells with 
different mutations will be required with the appropriate 
antibodies to assess the impact of abnormal WRN protein 
in such cells. It will be important to determine whether 
the phenotype of human WS cells expressing a detectable 
mislocalized truncated WRN protein is more severe than 
WS cells with no measurable level of WRN protein.

One advantage of using animal models is the possibility 
of modifying their diet in a controlled laboratory setting. 
Interestingly, Wrn∆hel/∆hel mice show a decrease in serum 
glutathione (GSH) level and an increase in serum vitamin 
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C level47. Notably, WS patients also exhibit an imbalance 
in plasma GSH level and an increase in serum ascorbic 
acid (vitamin C), suggesting a pro-oxidant status in such 
individuals33. The increase in vitamin C levels in Wrn∆hel/∆hel 
mice may be due to a response to the abnormal redox status 
in such animals inferred by the elevated oxidative DNA 
damage, the augmented lipid peroxidation and reactive 
oxygen species levels in several tissues of these mutant 
mice43, 47. Importantly, supplementation of Wrn∆hel/∆hel mice 
with 0.4% vitamin C (weight/volume) in drinking water 
reversed all the phenotypes observed in Wrn∆hel/∆hel mice 
and increased the mean life span of these animals to a 
normal wild type life span47. Such a complete reversal 
of the phenotypes observed in Wrn∆hel/∆hel mice was not 
obtained with other known antioxidants like resveratrol or 
catechin43,48. It is important to mention that vitamin C is not 
only a soluble antioxidant but also an important co-factor 
for hydrolase and monooxygenase enzymes involved in the 
synthesis of collagen, carnitine, and neurotransmitters49. 
Carnitine is required for the transport and transfer of 
fatty acids into mitochondria where it can be used for 
energy production. Vitamin C is also necessary for the 
transformation of cholesterol to bile acids as it modulates 
microsomal hydroxylation reactions in the liver49. In 
addition, vitamin C regulates the active levels of several 
transcription factors like HIF1α (Hypoxia induced factor 
1α) or NF-κB (a factor that can modulate inflammatory 
responses)50,51. Accordingly, we observed that vitamin C 
treatment reversed the abnormal high levels of active HIF1α 
and NF-κB found in the liver of Wrn∆hel/∆hel mice47. Vitamin C 
is also important for the activities of enzymes involved in 
the oxidative protein folding reactions in the endoplasmic 
reticulum52. Noticeably, we found that the mislocalization 
of the Wrn helicase mutant protein in the endoplasmic 
reticulum fraction from liver tissues increased oxidative 
stress in that cellular compartment even in younger four-
month old mice before they exhibit hepatic steatosis, cardiac 
fibrosis, or cancer. Thus, although younger Wrn∆hel/∆hel mice 
did not exhibit a pro-oxidant status at the systemic level, 
they did show oxidative stress at the sub-cellular level in 
tissues. Vitamin C treatment reversed this stress in the 
endoplasmic reticulum of Wrn∆hel/∆hel mice45.

We have evidence that vitamin C is not only efficient 
in reversing the age-related phenotypes observed in 
Wrn∆hel/∆hel mice, but it is also efficient in reversing aging in 
the worm Caenorhabditis elegans bearing a nonfunctional 
wrn-1 DNA helicase ortholog53. The longevity of wrn-1 
mutant worms is reduced compared to wild type worms 
when grown at 25˚C. The median life span of vitamin C 
treated wrn-1 mutant worms was significantly increased 
by 26% compared to untreated wrn-1 mutant animals and 
was comparable to the normal median life span of wild 
type worms.

Altogether, the results obtained with both worms and 
mice support the hypothesis that vitamin C treatment may 
improve the health and/or life span of very different species 
bearing a debilitating mutation in the WRN gene ortholog. 
Thus, a long-term vitamin C supplementation could have 
beneficial effects for human patients with WS. A major 
advantage of using vitamin C as a potential treatment for 
WS is the wide range of concentrations that can be used 
without toxic effect in humans. Another advantage is the 
possibility of following the impact of vitamin C treatment in 
patients with WS by simply monitoring several metabolites 
and secreted factors in their serum such as specific 
lipids, glucose, PAI-1, IL-6, or IL-1037,38. Indeed, vitamin 
C treatment normalized the serum cardiometabolic and 
inflammatory profiles of Wrn∆hel/∆hel mice45. We hypothesize 
that similar results could be obtained with WS patients. 
Of interest, a recent case study indicated that the lipid-
soluble antioxidant molecule astaxanthin improved 
the nonalcoholic fatty liver disease of WS patients with 
diabetes mellitus54. In addition, the reduction of oxidative 
stress observed in WS fibroblasts alleviates their abnormal 
in vitro morphological phenotype55. Importantly, vitamin 
C not only regenerates GSH (a natural anti-oxidant) in the 
body, but it is also capable of recycling the lipid-soluble 
vitamin E56 providing potentially additional beneficial 
effect. Thus, it should be possible to perform a longitudinal 
study by simply examining the systemic inflammatory and 
oxidant status in vitamin C treated WS patients by means 
of a straightforward clinical time-course noninvasive blood 
sampling protocol.
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